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Solution of the Boltzmann equation without the relaxation-time approximation
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Electron Physics Group, National Institute of Standards and Technology, Gaithersburg, Maryland 20899

~Received 7 December 1998!

A method is presented for solving the Boltzmann equation in layered systems without the relaxation-time
approximation. The solution is compared with that obtained using the relaxation-time approximation for
free-electron solids in the presence of boundaries. For the cases studied, most of the differences can be
minimized by using the transport relaxation time. For nonfree electron materials it is expected that the differ-
ences will be more complex.@S0163-1829~99!05220-0#
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I. INTRODUCTION

The relaxation-time approximation is almost universa
used to simplify calculations of the conductivity. I
multilayer systems, it has recently been used extensiv
to calculate ~see Ref. 1 for reviews! the giant
magnetoresistance,2 which is the change in the electrical re
sistance that occurs in systems containing magnetic la
when the direction of magnetization is changed in some
the layers. For free-electron models, the resulting simplifi
tion allows analytic solutions when current flow is parallel
the interfaces.

A common approach for calculating the conductivity is
solve the semiclassical Boltzmann equation. A detailed
cussion of the use of the Boltzmann equation in bulk syste
is given by Allen.3 This approach has been applied
multilayer systems, using both free-electron4 and ab initio
band structures.5 In most situations, solving the Boltzman
equation gives similar, if not identical, results to the oth
common approach, evaluating the Kubo formula~see Ref. 6
for a discussion of this issue for free electrons!.

If the current is perpendicular to the interface, there is
analytic solution, even with the relaxation-time approxim
tion. Recently, Zhang and Levy7 have examined the role o
diffuse and specular interface scattering in this geome
using the relaxation-time approximation. Valet and Fe8

used it to study the validity of a previously introduced ma
roscopic model. For this geometry a number of worke9

have studied the resistance due to a single barrier. The m
detailed results were obtained by Kunze10 who obtained nu-
merical results for the current and the particle density as w
as for the barrier resistivity, again in the relaxation-time a
proximation. Schepet al.11 have used a simplified model o
bulk transport in conjunction withab initio calculations of
the transmission and reflection from ideal interfaces to co
pute the resistances of those interfaces.

There are two situations in which the relaxation-time a
proximation is exact. The first case is for isotropic scatteri
which for free-electrons holds when the elastic impurity sc
tering is described by a delta function. In this case,
relaxation-time approximation remains exact in the prese
of spatial variations. The second, more restrictive case oc
when the elastic impurity scattering depends only on
scattering angle, there is no spatial variation, and the tra
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port relaxation time~see Sec. II! is used for the relaxation
time.

In this paper, we develop a method to solve the Bol
mann equation in layered systems without invoking t
relaxation-time approximation. We then calculate the co
ductivity for several situations that involve free-electron m
als with boundaries so that the systems are not homogen
and the relaxation-time approximation is not strictly vali
The calculations are compared to those done using
relaxation-time approximation. The cases studied are~1! a
single slab of finite thickness, diffuse reflection at the s
faces, and an applied electric field parallel to the surface
~2! an infinite free-electron metal divided by a partially r
flecting interface with an applied field perpendicular to t
interface. We find that the relaxation-time approximation d
scribes the conductivity well as long as the relaxation time
chosen to be the transport relaxation time. It should be e
phasized that in more anisotropic situations, such asd-band
metals rather than free-electron metals, the relaxation-t
approximation may not be adequate.

In Sec. II, we discuss the Boltzmann equation and
relaxation-time approximation for free-electron metals.
Sec. III, we examine the conductivity for the case of a th
slab, assuming a free-electron metal and nonspecular bo
ary scattering and in Sec. IV, the resistance at a parti
reflecting interface is calculated for applied fields perpe
dicular to the interface. Section V is a summary of the pap
The formalism for solving the Boltzmann equation in layer
systems is given in the Appendix.

II. THEORY

In this section, we first discuss the Boltzmann equat
and the relaxation-time approximation, then we discuss
specific case of free-electron materials and impurity scat
ing that depends only on the scattering angle. The distri
tion function is given byf (k)5 f 0(ek)1(] f 0 /]e)g(k) in the
presence of an external field, wheref 0 is the equilibrium
distribution function. For metals, the changes in the distrib
tion function can be restricted to energies close to the Fe
energy because the factor] f 0 /]e is sharply peaked aroun
the Fermi energy. For the linearized Boltzmann equation,
changes are approximated to occur onlyon the Fermi sur-
face. The linearized Boltzmann equation forg is
13 338
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vz

]g~k!

]z
2S ]g~k!

]t D
coll

5eEvx,z , ~1!

where g(k) is the change in the electron distribution f
wave vectorsk restricted to the Fermi surface. The change
the distribution arises from a fieldE assumed to be constan
throughout the layer. The distribution also depends on spa
position, i.e.,g5g(k,z), but this dependence ofg on z will
not be written explicitly. It is assumed that the geometry
such that the spatial dependence is only in thez direction; the
system is uniform in thex andy directions. In Eq.~1! E is the
external electric field andvx,z either isvx or vz depending on
whetherE is in thex or z direction, respectively. The veloci
ties vx or vz are thex and z components of velocity at the
Fermi surface.

The term that describes collisions with impurities is

2F]g~k!

]t G
coll

5
g~k!

t0~k!
2E

FS
dk8P~k,k8!g~k8!, ~2!

where the scattering relaxation time is

1

t0~k!
5E

FS
dk8P~k,k8!, ~3!

and P(k,k8) is the probability of scattering fromk to k8.
The first term on the right-hand side of Eq.~2!, the
scattering-out term, represents the rate that electrons are
tered out of the statek. The second term, the scattering-
term, is the rate at which electrons are scattered intok,
P(k,k8)g(k8) being the rate at which electrons are scatte
from k8 to k. The isotropic part ofg is not affected by col-
lisions. For this part, the two terms on the right-hand side
Eq. ~2! cancel each other. Only the anisotropic part ofg
relaxes.

The relaxation-time approximation replaces Eq.~2! with

2F]g~k!

]t G
coll

5
g~k!2ḡ

t~k!
, ~4!

where ḡ is the spatially dependent average ofg over the
Fermi surface.

ḡ5
1

4pEFS
dkg~k!. ~5!

If the scattering is isotropic, the scattering probability can
factored out of the integral in the scattering-in term. Th
only the isotropic part of the distribution function remains.
this case, the relaxation-time approximation, Eq.~4!, is ex-
act. For a more general scattering function, the relaxa
time in Eq. ~4!, t, is allowed to be different from the sca
tering relaxation timet0. Later in this section, we show tha
for free electrons with nonisotropic scattering, the transp
relaxation time, defined below in Eq.~7!, is a better approxi-
mation.

Up to this point the discussion has been general,~a! ap-
plicable to a nonfree-electron metal, and~b! no assumptions
have been made about the dependence ofP on k,k8. We now
discuss the case of a free-electron metal; the general ca
treated in the Appendix.
ial

s

at-

d

f

e
,

n

rt

is

For the case of free electrons scattering elastically fr
spherically symmetric impurities,P(k,k8) is a function of
the scattering angleuk,k8 where cos(uk,k8)5V̂•V̂8 and V̂
5k/kF is the direction of the momentum of an electron
the Fermi surface. In that case it can be shown that thebulk

solution ~no spatial variation! of Eq. ~1! for g(V̂) is given
by12

g~V̂ !5t transeEvF cos~u!, ~6!

for an electric field in thez direction, with cos(u)5V̂•ẑ. The
transport relaxation time is given by

1

t trans
5E dV̂8P~V̂,V̂8!~12V̂•V̂8!. ~7!

It is determined byP(V̂,V̂8)(12V̂•V̂8) rather than the dif-
ferential scattering probability alone,P(V̂,V̂8), due to the
scattering-in term of Eq.~2!. t trans can be interpreted as th
relaxation time for the momentum. A small angle electr
scattering will not serve to randomize the electron mom
tum, thus the factor (12V̂•V̂8) in Eq. ~7! is small for small
angle scattering. For isotropic scattering, these two timest0
andt trans are equal.

The Boltzmann equation in the relaxation-time appro
mation is

vz

]g~V̂ !

]z
1

g~V̂ !2ḡ

t~V̂!
5eEvx,z , ~8!

while the Boltzmann equation without the relaxation-tim
approximation is

vz

]g~V̂ !

]z
1

g~V̂ !

t0~V̂ !
2E dV̂8P~V̂,V̂8!g~V̂8!5eEvx,z ,

~9!

where t0(V̂) is given by Eq.~3!. In the case of a delta
function scattering potential, i.e., isotropic scattering, Eq.~9!
reduces to Eq.~8!, the Boltzmann equation in the relaxation
time approximation, witht given by the scattering timet0 in
Eq. ~3!.

III. THIN SLAB

We now calculate the conductivity of a slab in a fre
electron model. The slab is confined to2d/2,z,d/2 and is
infinite in thex andy directions. The external field is taken t
be in thex direction. The slab is shown in Fig. 2~a!.

The Boltzmann equation is given by Eq.~9! with vx,z

5vx . The change in the distribution function,g(V̂), is la-
beled g1 or g2 depending on whether the component
velocity in the z direction, vFcos(u), is in the positive or
negativez direction. The boundary conditions are

g1~V̂spec!5plg
2~V̂ !, z52

d

2
,

g2~V̂spec!5prg
1~V̂ !, z5

d

2
, ~10!
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where V̂spec denotes the direction of an electron that w
traveling in a directionV̂ and is specularly reflected. Th
specularity coefficientspl ,pr satisfy

0<pl ,r<1, ~11!

wherep50 denotes completely diffuse scattering andp51
is the condition for completely specular scattering. It is e
ily verified by substitution that the solution of Eq.~8!, the
Boltzmann equation in the relaxation-time approximation,
this geometry is

g1~V̂ !5~11F1e2(d12z)/2tuvzu!eEvxt,

g2~V̂ !5~11F2e(d12z)/2tuvzu!eEvxt, ~12!

wherevz5vF cos(u) and vx5vF sin(u)cos(f). eEvxt is the
bulk solution, Eq.~A11!, i.e., the solution of the particula
Eq. ~A8!, and the second term on the right-hand side of
~12! is the solution of the homogeneous equation, Eq.~A6!.
The quantitiesF1 andF2 are determined by substitution o
Eq. ~12! into Eq. ~10!. The conductivity per spin is then
obtained from

s rta52
e

E

1

~2p!3

1

dE2d/2

d/2

dzE d3k vxg~V̂ !
] f 0

]e

52
e

E

1

~2p!3

mkF

\2

1

dE2d/2

d/2

dzE
FS

dV̂ vxg~V̂ ! ~13!

wherev5(\/m)k.
In the limit of specular reflection,pl5pr51, the slab

mimics a bulk metal and the conductivity is given by t
bulk value,

s05
ne2t

m
, ~14!

wheren is the number of electrons~per spin! per unit vol-
ume, e is the electron charge, andm is the electron mass
Because we are interested in deviations from bulk behav
we focus on the diffuse limit. For the case of purely diffu
scattering,pl ,pr50, and F1521, F252e2d/tuvzu. The
conductivity for this case was first given by Sondheimer13 as

s relax

s0
512

3

8s
1

3

2sE1

`

dtS 1

t3
2

1

t5D e2st, ~15!

where one has

s5
d

tvF
. ~16!

The limiting forms of Eq.~15! are

s relax

s0
512

3

8s
, s@1, ~17!

and

s relax

s0
5

3s

4
lnS 1

sD , s!1. ~18!
-

.

r,

We choose a model for impurity scattering of the form

V~r !5Ae2r 2/2l 2, ~19!

where l is a parameter that measures the effective range
the potential andA is the strength. This model is chose
because it is simple and provides a length scalel for the
scattering potential. In general, the defects that cause sca
ing are unknown, but should have a finite extent on the or
of atomic dimensions. Below, we obtain numerical resu
for kFl 5 0, 1, 2, 3. In the limit thatl→0, V(r ) is effectively
a delta function so thatP(V̂,V̂8) becomes constant and th
relaxation-time approximation becomes valid. The scatter
probability is given by

P~V̂,V̂8!5E d3rei (k2k8)•rV~r !, ~20!

in the Born approximation. Bothk andk8 lie on the Fermi
surface. The model scattering potential is spherically sy
metric so thatP depends only on the angle betweenk andk8,
the scattering angleuk,k8 . Use of Eq.~19! in Eq. ~20! gives

P~V̂,V̂8!5P~uk,k8!5Be2(kFl )2(12cosuk,k8), ~21!

wherekF is the Fermi momentum. For a givenkFl , B deter-
mines the relaxation time. Figure 1~a! shows the anisotropy
of the scattering probabilityP as the parameterkFl takes the
values 0,1,2,3.

Use of Eq.~21! in Eqs.~3! and ~7! gives the ratio of the
scattering time to the transport relaxation time, which
equal to the ratio of the scattering mean-free pathl0 to the
transport mean-free path

t0

t trans
5

l0

l trans
5

~e2a22a21!

~ae2a2a!
, ~22!

wherea5(kFl )
2 ~see Fig. 1!. The transport mean-free path

given by

l trans5vFt trans, ~23!

FIG. 1. Ratio of transport mean-free path to mean-free path.
inset ~a! shows the anisotropy of the scattering probability,P, for
indicated values of the parameterkFl 50,1,2,3. The main panel~b!
shows the corresponding ratios of the scattering time mean-
path to the transport mean-free path.
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and we will takel trans to be the mean-free path when th
relaxation-time approximation is used;t→t trans and vFt
→l trans.

The solution of the Boltzmann equation without th
relaxation-time approximation is given in the Append
There, the distribution function is discretized onto a mesh
pointsk on the Fermi surface, and the Boltzmann equatio
solved on that mesh. For the thin film considered here,
solution on that mesh can be written

g1
k5t transeEvkx1 (

l i.0
j ie

2l i zxi ,k ,

g2
k5t transeEvkx1 (

l i,0
j ie

2l i zxi ,k , ~24!

wheregk is the value ofg at a pointk on the Fermi surface
For a free-electron model,k denotes a particular value ofV̂.
The superscript1 or 2 refers to states moving in the pos
tive or negativez direction, respectively. The first term is th
driving term for the Boltzmann equation, the right-hand te
in Eq. ~1!. The quantitiesxi andl i are the eigenvectors an
eigenvalues, respectively, of the operator for a form of
scattering matrix@see Eqs.~A7!, ~A10!, and ~A14!#. The j i
are determined from the boundary conditions, Eq.~10!. Elec-
trons moving to the right must relax towards the bulk va
of g as they move away from the left interface, hence
restriction l i.0 in the first line of Eq.~24!. The current
density as a function of position is given by

j ~z!52e
1

~2p!3

mkF

\2 EFS
dV̂ vxg~V̂ !. ~25!

In practice, this is evaluated by a sum over the discrete m

FIG. 2. Current distribution in a thin film. Panel~a! shows the
geometry of thin slab indicating direction of current. Panels~c!–~d!
show the exact current density~solid line! and current density cal
culated in the relaxation-time approximation~dashed line! for sev-
eral values of the film thickness in terms of the transport mean-
path.
f
is
e

e

e

h.

We now assume purely diffuse scattering at the bou
aries and we compare the current density calculated with
the relaxation-time approximation to that calculated with t
relaxation-time approximation~using the transport scatterin
time and mean-free path!. The resulting current densities ar
shown in Fig. 2 for three different values of the film thick
ness;d5l trans/8, l trans/2, and 2l trans. The results can be
understood as follows. For the case shown in Fig. 2~b!, d
5l trans/8, the ‘‘exact’’ current is less than the relaxation
time approximation current for all values ofz. Because of the
diffuse scattering at the walls there are fewer electrons av
able there to scatter into a stateV̂ from some other stateV̂8
as can be seen from the second term on the right-hand sid
Eq. ~2!. This means that the scattering time near the wa
will be shorter than in the bulk and consequently the curr
will be smaller. The relaxation-time approximation is corre
only for the uniform bulk situation and does not take prop
account of the effects of the boundary conditions, e.g.,g1

50 atz52d/2 @Eq. ~10!#, thus it over estimates the amou
of scattering ‘‘in’’ from the second term on the right-han
side of Eq.~2!. As the electrons move away from the wa
they lose their memory of it on a length scale of the me
free path. The exact solution has a shorter mean-free
near the walls and so it approaches the bulk current den
at a faster rate than the relaxation-time approximation c
rent, hence, the crossing of the currents in Fig. 2~c!. Figure
2~d! is for a larger value of the slab width and shows t
approach of the currents to the bulk value.

Figure 3 shows the ratio of the ‘‘exact’’ conductivitys to
that of the conductivity calculated in the relaxation-time a
proximation s rta again using the transport mean-free pa
l trans. This ratio is plotted versusd/l trans for various values
of the parameterkFl in Eq. ~21!. ForkFl 50, the scattering is
isotropic, corresponding to a delta function scattering pot
tial. As discussed earlier in the paper, the relaxation-ti
approximation is exact in this limit and the ratio of condu
tivities is unity. In the limit of larged/l trans, the electrons do
not see the boundaries. In this isotopic situation
relaxation-time approximation is exact and the ratio of co
ductivities approaches one. For very smalld/l trans, the ratio
of conductivities behaves as shown in the insert of Fig. 3 a
can be understood as follows. Equation~18! gives s relax

e

FIG. 3. Conductivity of a thin film. For the indicated values
kFl 50,1,2,3, the main panel and the inset show the ratio of ex
numerical conductivity to that calculated using the relaxation-ti
approximation as a function of the ratio of the film thickness to
transport relaxation-time mean-free path. The inset shows the
gion where the ratiod/l rta is very small.
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;d ln(ltrans/d). As described above, the relaxation-time a
proximation overestimates the mean-free path for electr
near a diffusely scattering boundary. If we assume the e
conductivity takes the formd ln(lef f /d) where le f f,l trans
then s/s rta→1 as d/l trans→0 and s/s rta decreases a
d/l trans increases from zero in agreement with the behav
shown in the inset of Fig. 3. However, there will be quantu
effects in the regiond/l trans!1 that are not treated by th
Boltzmann equation.

It is clear from the strong dependence ofl trans/l0 on kFl
shown in Fig. 1 that the good agreement between the ‘‘
act’’ conductivity and that calculated using the relaxatio
time approximation depends on the use of the transport
laxation time.

IV. AN INFINITE METAL DIVIDED BY AN INTERFACE

We now consider the case of an infinite, free-electr
metal divided by an interface atz50. Electrons incident on
the interface are reflected or transmitted with a probabi
that depends on their angle of incidence. For current perp
dicular to the interface, the current density must be c
served and is thus constant, independent ofz. Besides the
resistivity due to impurity scattering there is an addition
resistivity due to the fact that there will be only partial tran
mission across the interface. To force a finite current thro
the partially reflecting interface, it is necessary to build u
finite chemical potential difference across the interface.
general, the chemical potential will also have an exponen
like dependence onz that decays away from the interface o
both sides. Figure 4 shows the behavior of the chemical
tential near the interface. In Fig. 4~a! the variation due to the
external field is not included and in Fig. 4~b! it is. In both
panels, the dashed lines show the extrapolation of the ch
cal potential difference far from the interface back to t
interface, this difference is labeled̀ in the figure. The

FIG. 4. Variation of chemical potential near an interface with
perpendicular current. The dashed lines indicate the chemical
tentials far from the interface and the solid line includes the con
bution of the exponential terms. In panels~a! and ~b!, the external
electric field is, respectively, not included and included. The` and
0 label the potential drop associated with the interface far from
interface and at the interface, respectively. The calculations
kFl 51 andn58 @see Eq.~28!#.
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chemical potential difference at the interface is labeled
Charge neutrality is imposed by identifyingg2ḡ as the elec-
tron distribution and2]g/]z as the additional electric field
required to maintain neutrality. The interface resistivity
given by the ratio of the extrapolated chemical potential d
ference divided by the current through the interface.

In this geometry, the relaxation-time approximation to t
Boltzmann equation cannot be solved analytically as can
done when the current is parallel to the barrier. The Bo
mann equation is given by

vz

]gi~V̂ !

]z
1

gi~V̂ !

t0~V̂ !
2E dV̂8P~V̂,V̂8!gi~V̂8!5eEvz ,

~26!

where i 51,2 denotes the metal to the left or right ofz50,
respectively. The scattering probability is given by Eq.~21!.
As previously, the change in the distribution functiongi(V̂)
will be labeledg1 or g2 depending on whether the compo
nent of velocity in thez direction,vFcos(u), is in the positive
or negativez direction. The boundary conditions atz50 are

g1
25R11g1

11T12g2
2 ,

g2
15R22g2

21T21g1
1 , ~27!

whereRii is the probability that an electron in regioni, is
reflected back intoi andTi j is the probability that the elec
tron is transmitted from regionj into regioni. The reflection
and transmission coefficients are modeled as

Rii ~u!512Ti j ~u!5
a

a1cosn~u!
, ~28!

whereu is the angle of incidence anda and n are param-
eters. This form is a generalization of the result14 for a sheet
delta function potential of strength\vFAa at z50, for which
n52. A sheet delta function with an appropriate amplitude
a good approximation for the low-energy reflection from p
nar defects, like stacking faults, where the electronic str
ture is the same on both sides of the interface.15 For inter-
faces between dissimilar materials, reflection is mo
complicated. To examine a range of behaviors while ma
taining a simple form for the reflection, we generalize t
exponentn to other values.

The boundary conditions requiregi to not diverge far
from the interface, thus the solution given by Eq.~A20! and
Eq. ~A11! takes the form

g1k5t transeEvkz1j0
(1)zk1j1

(1)~zkz2zk8!

1 (
l i,0

8j i
(1)e2l i zxi ,k ,

g2k5t transeEvkz1j0
(2)zk1j1

(2)~zkz2zk8!

1 (
l i.0

8j i
(2)e2l i zxi ,k , ~29!

in regions 1 and 2. The first term on the right-hand side
Eq. ~29! is the bulk solution in layeri for field Ei . The
second term represents a uniform shift in the Fermi ene
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i-

e
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becausezk51 and f 5 f 01(] f 0 /]e)g. The third term is
given by Eq.~A16! and it is clear from Eq.~A19! that unlike
the second term, it carries current. If the correct value ofEi

is used in the first term, thenj1
( i )50, otherwise this term

essentially correct the field and the associated current fl
The exponential terms do not carry current perpendicula
the interface because current conservation is incompa
with an exponential variation.

The interface resistance,R, is given by the relationDV
5IR whereDV5(j0

(1)2j0
(2))/e is the potential drop acros

the interface andI 5 jA wherej is the current density throug
the interface andA is the cross sectional area of the interfac
The interface resistance,R, is the additional resistance of th
sample due to the interface. It is useful to define an ad
tional resistanceR0 to be the total potential drop at the in
terface divided by the current. It is obtained by replacingj0

( i )

above byj0
( i )1dmexp,i(z50). dmexp,i(z50) is the change in

the Fermi energy at the interface in regioni 51,2 due to the
exponential terms in Eq.~29! and it is given by the Ferm
surface average of those terms evaluated atz50.

The current density is

j ~z!52e
1

~2p!3

mkF

\2 EFS
dV̂ vzg~V̂ !, ~30!

and is constant throughout the metal.
The discretization ofV̂ is such thatV̂k takes onN values

in each region so the boundary conditions Eq.~27! constitute
N equations. There areN/221 values ofj i

(1) and N/221
values ofj i

(2) in Eq. ~29! as well asj0
(1) , j0

(2) , j1
(1) , and

j1
(2) . We choosej0

(1)52j0
(2)5j0, which corresponds to a

relative shift in the Fermi energies in regions 1 and 2 cor
sponding to a potential difference between the two regi
created by the applied field. As discussed above,j1

(2)5j1
(1)

50, because the current density is equal to its bulk va
everywhere. With these choices we can findg1k ,g2k and
calculate the interface resistance,R, as well as the resistanc
at the interface,R0.

The termzz2z8 @see Eq.~A16!# can be understood as a
electrochemical potential~the gradient of which gives a
field! and an associated current flow. In the general cas
perpendicular transport, the bulk conductivities will diff
from layer to layer, so the internal fields will be differe
from layer to layer. One way to solve for the overall condu
tivity is to impose a bulk-current density at infinity, and the
solve the boundary conditions from layer to layer to det
mine the internal fields. In this approach, the solutionzz
2z8 plays a crucial role in each layer. An alternate approa
is to solve the particular equation in each layer and find
field that is necessary to make the current the same in e
layer. In this approach, the solutionzz2z8 plays no role,
because it has already been accounted for by the partic
solution and the field. We have used this latter approac
the work described here. The relationship betweenzz2z8,
the fieldE, and the particular solution is given by Eq.~A19!.

The behavior of the interface resistance can be unders
in greater detail by examining the current density a
‘‘chemical potential’’ as a function of position on the Ferm
surface. It is useful to define
w.
to
le
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dm5~g2
11g2

2!2~g1
11g1

2!, ~31!

wheregi
1 refers to an electron moving to the right in th

directionV̂ andgi
2 refers to an electron moving in a direc

tion corresponding to specular scattering at the interface,
u→(p2u) andf→f. The quantitiesgi

6 correspond to the
same value of momentum parallel to the interface. We a
define

d j 5~gi
12gi

2!cos~u!, ~32!

where conservation of current requiresd j to be independen
of i for interfaces with no diffuse scattering, as we consid
here.

Combining Eqs.~27!, ~28!, ~31!, and~32! gives

dm522a d j /cosn11u, ~33!

which can be solved bydm}a and d j }cosn11u. We find
that this solution holds in the limit thata→`, where strong
reflection for all angles gives a largedm only weakly depen-
dent on angle. From Eq.~29!, it is clear thatd j depends on
the j i terms, the coefficients of the exponentially varyin
terms, and not onj0, while dm depends on both thej i and
j0. We conclude that for largea, j0}a while the j i are
roughly independent ofa. Since the exponential terms de
pend strongly onu, d j has a strong angular variation in th
limit. This behavior for largea is illustrated in Fig. 5 for
values ofa corresponding to strong reflection. For smalla,
on the other hand, the reflection is weak near the zone ce
cos(u);1, and the current distribution is very close to th
bulk distribution, cos2(u). This, in turn leads to a strong de
pendence ofdm on u. The consequences of the limiting be
haviors ofa behavior are shown in Figs. 6 and 7.

As a function ofa, Figs. 6~a! and 7~a! show the interface
resistanceRrta, the resistance calculated using the relaxatio
time approximation to the Boltzmann equation, Eq.~8!, and
the transport lifetime. The linear dependence ofRrta on a is
a direct result of the fact that the interface resistance,R, is
given by the relationDV5IR whereDV5(j0

(1)2j0
(2))/e and

j0;a.

FIG. 5. Angular dependence of current though an interfa
Panel~a! shows the current density, Eq.~32!, for various values of
a as a function of cos(u). Panel~b! shows the ‘‘chemical potential’’
dm, Eq. ~33!, for various values ofa as a function of cos(u). The
calculations usekFl 51 andn58.
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Figures 6~b! and 7~b! are plots of the ratioR/Rrta. The
curves are for the valueskFl 50,1,2,3. The relaxation-time
approximation to the Boltzmann equation using the transp
lifetime corresponds tokFl 50. The independence ofR/Rrta
on a also follows from the linear dependence ofj0 on a.

FIG. 6. Interface resistance as a function of reflection stren
Panel~a! shows the interface resistance calculated in the relaxat
time approximation with the transport lifetime versusa for n52,
see Eq.~28!. The resistance is scaled byRA56pm/(Ae2kF

3). Panel
~b! shows the ratio of the exact barrier resistance to that calcul
in the relaxation-time approximation with the transport lifetime f
kFl 51,2,3. Panel~c! shows the difference between the interfa
resistanceR related to the potential drop in Fig. 4~a! labeled` and
that labeled 0.

FIG. 7. Interface resistance as a function of reflection stren
Same as Fig. 6, but forn58.
rt

The fact thatR/Rrta→1 implies that the exponential term
become constant, independent ofa, for largea.

Figures 6~c! and 7~c! show the interface resistance diffe
ence,R2R0, versusa for kFl 50,1,2,3. The difference,R
2R0, depends only on the exponential terms which do
depend ona for largea, hence, the saturation of the curve

The casen51 is a special case where there is no exp
nential contribution to the charge density, the terms on
right-hand side of Eq.~29! vanish. In that case the interfac
resistance is given by

R52a
6p2m

Ae2kF
3

52aRA . ~34!

This quantity is identical to the resistance that describes
total potential drop across the interface, and there are
corrections to the relaxation-time approximation.

V. SUMMARY

A method is presented for solving the spatially varyi
Boltzmann equation without the making the relaxation-tim
approximation. This method is presented in the Appen
and involves a discretization of points on the Fermi surfa
The scattering terms can then be inverted by matrix meth
and the spatial part of the equation can be dealt with ana
cally.

The solution is compared with that obtained using t
relaxation-time approximation for free-electron solids in t
presence of boundaries. The cases studied are~a! a single
slab of finite thickness with nonspecular reflection at the s
faces and an applied electric field parallel to the surface
~b! the case of an infinite free-electron metal divided by
partially reflecting interface with an applied field. For th
cases studied, most of the differences can be minimized
using the transport relaxation time. For reasonable value
the parameters maximum differences in conductivities or
sistances are of order 10% and typically the differences
considerably smaller. For nonfree-electron materials it is
pected that the differences will be more complex because
transport relaxation time is exact only for an isotropic bu
material.
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APPENDIX

In a homogeneous layer, the linearized Boltzmann eq
tion to be solved is, from Eqs.~1! and ~2!,

vz

]g~k!

]z
1

g~k!

t0~k!
2E

FS
dk8P~k,k8!g~k8!5A~k!,

~A1!

whereA(k) is the term due to the external electric field. Th
solutions from several layers can be joined together using
boundary conditions between the layers to give the result
a composite structure. In order to solve Eq.~A1! we dis-
cretize it

h.
n-

ed

h.
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vzk

]gk

]z
1

gk

tk
2(

k8
Dk8Pk,k8gk85Ak , ~A2!

wheregk is the value ofg at a pointk on the Fermi surface
andDk is a weighting factor such that

(
k

Dk5E dV̂, ~A3!

and

1

tk
5(

k8
Dk8Pk,k8 , ~A4!

wherePk,k8 is symmetric.
The spatial dependence of Eq.~A2! can be solved by

finding the solutions to the particular and to the homo
neous equations. The particular equation is

gk

tk
2(

k8
Dk8Pk,k8gk85Ak , ~A5!

while the homogeneous equation is

vzk

]gk

]z
1

gk

tk
2(

k8
Dk8Pk,k8gk850. ~A6!

It is useful to define

Bk,k85
dk,k8
tk

2Dk8Pk,k8 , ~A7!

so that the particular equation, Eq.~A5!, becomes

(
k8

Bk,k8gk85Ak , ~A8!

and the homogeneous equation, Eq.~A6!, is written as

(
k8

S dk,k8

]

]z
1@V21B#k,k8Dgk850, ~A9!

where one has

Vk,k85vzkdk,k8 . ~A10!

The matricesB andV21B are both asymmetric and singula
since(k8Bk,k850.

For the free-electron case whenP depends only on scat
tering angle, the solution of Eq.~A8! is given by Eq.~6!,
which in the notation of this appendix is

gk5t transAk , ~A11!

wheret trans is given by Eq.~7!.
In general, Eq.~A5! has the formal solution

gk5(
k8

Bk,k8
21 Ak8 , ~A12!

but the matrixBk,k8 is singular. The eigenvectorz, corre-
sponding to the zero eigenvalue ofB has constant compo
nents,zk51, because
-

~Bz!k5(
k8

Bk,k8zk85(
k8

Bk,k850. ~A13!

If Eq. ~A6! is satisfied by ag theng1constant3z is also a
solution. The solutions of Eq.~A12! for gk that are of physi-
cal interest can be obtained numerically from the singu
value decomposition ofB. The numerical solution we us
gives a result that is orthogonal tozT. For the free-electron
case, whenP depends only on scattering angle, the first te
on the right-hand side of Eq.~A20! is given byt transAk .

The homogeneous equation, Eq.~A9!, can be solved as
follows. Denote the right eigenvectors ofV21B by xi and the
corresponding eigenvalues byl i where

V21Bxi5l ixi . ~A14!

Then the expression

g5(
i

j ie
2l i zxi , ~A15!

is seen to be a solution of Eq.~A9! by substitution. Thej i
are constants to be determined by the boundary conditio

A complication is that, forV21B, the zero eigenvalue is
doubly degenerate with the same eigenvectorz, as discussed
above. The matrix is referred to as defective and is said
have a nontrivial Jordan block. Consequently, the two ter
that correspond to zero eigenvalues,l i50, are not included
in Eq. ~A15! because they have a different form. The co
stant termj0z is one additional term in the solution. Becau
the eigenvalue is degenerate there is another solution o
homogeneous equation, Eq.~A9!,

j1~zz2z8!, ~A16!

where one has

z85B21Vz. ~A17!

The fact thatzz2z8 is a solution of Eq.~A9! can be verified
by substitution. We note thatz8 is only defined to within an
additional term proportional toz. The numerical procedure
we use to obtainz8 gives a result that is orthogonal tozT.

When the electric field is in thex direction, which is trans-
lationally invariant, the termzz2z8 does not play a role,
because there is no current flow in thez direction and the
coefficient ofz8 must be zero, so the term is discarded. Ho
ever, in the case that the electric field is in thez direction,
zz2z8 is an essential part of the solution forg. In that case
Eq. ~10!, the solution for the bulk value ofg becomes

gbulk5B21eEvz5eEB21Vz. ~A18!

Comparison with Eq.~A17! gives

gbulk5eEz8. ~A19!

Thus,z8 is proportional togbulk and the second term on th
right-hand side of Eq.~A16! is one that carries current. Th
linear z-dependent portion ofzz2z8, which can be inter-
preted either as a chemical potential gradient or an exte
field, implies the current carrying partz8.

From Eqs.~A12!, ~A15!, and the discussion following Eq
~A15!, our final result is
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gk5(
k8

Bk,k8
21 Ak81j0zk1j1~zkz2zk8!1(

i
8 j ie

2l i zxi ,k ,

~A20!

where thel i are given by Eq.~A14! and thej are to be
determined by the boundary conditions. The two valuesi
for which l i50 are excluded from the summation in E
~A20!. If the correct fieldE is used to find the particula
solution, the first term in Eq.~A20!, then j1 will be zero.
Otherwise, the termj1(zkz2zk8) will compensate to give the
correct field and current.
.
la

,

.

s.
.

gn
The particular solution and the two terms associated w
zero eigenvalues control the current and the constant pa
the field in each layer. The exponential terms also have
isotropic part and contribute to the variation of the field, b
they do not carry current perpendicular to the interface. O
the particular solution and thej1(zkz2zk8) terms carry cur-
rent in that direction. While the exponential terms do n
carry current, they do change the angular distribution of
current. This redistribution is why these terms are import
near interfaces. They change the angular dependence of
rent distribution from that of the bulk to that which ge
through the interface.
s.
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